超声波技术作为一种物理手段和工具,能够在化学反应的介质中产生一系列接近的条件,能量不仅能够激发或促进许多化学反应、加快化学反应速度,甚至还可以改变某些化学反应的方向,产生一些令人意想不到的效果和奇迹。
超声波搅拌机可用于几乎所有的化学反应,如萃取与分离、合成与降解、生物柴油生产、治理微生物、降解有毒有机污染物、生物降解处理、生物细胞粉碎、分散和凝聚等。
基于瞬时的声空化效应,超声波目前被人们用于微观尺寸的搅拌。这种效应需要在相当高的超声强度下产生,伴随着微观气泡大量形成和生长。当气泡尺寸达到某一临界值,气泡生长速率快速增加,然后瞬间破裂,形成冲击波对团聚体进行分散,同时造成局部的高温高压(局部压力可达上千个大气压)。
超声搅拌发生的另外一个过程是液体的宏观流动。空化气泡浓度以发生器为中心沿轴线逐步降低,气泡向低浓度区域扩散带动液体流动,流动速度高达2m/s。这种流体流动足以提供充分的搅拌效果,无需增加额外的设备。
相对较低的超声波频率有利于浆料制备。通常在更低的输入能量条件下,超声波搅拌机能够达到与基于流体力学技术的搅拌相同的效果。超声波技术和球磨结合,以及添加表面活性剂的超声波搅拌特别有利浆料制备。
超声波搅拌技术的特点表明有可能在低溶剂含量条件下实现浆料颗粒均匀分散,这种高固含量技术也更加节能。就锂离子电池浆料而言,高固含量也是有利的,因为固含量低浆料更容易发生沉降,导致活物质、导电剂和粘结剂的不均匀分布,在极片干燥过程中也会导致沿极片厚度方向孔分布不均匀。浆料固体沉降到底部,集中在集流体的附近,这也会限制锂离子在此区域的传输。